

10GBASE-SR SFP+ 850nm 300m DOM Transceiver

SFP-10G-MM300

Application

- 10GBASE-SR/SW 10G Ethernet
- 1200-Mx-SN-I 10G Fibre Channel

Features

- Hot-pluggable SFP+ footprint
- Supports 9.95 to 10.5 Gb/s bit rates
- Power dissipation < 1W
- RoHS-6 compliant (lead-free)
- Industrial temperature range -40 $^\circ\,$ C to 85 $^\circ\,$ C
- Single 3.3Vpower supply
- Maximum link length of 400m on
- 4700 MHZ-km OM4 MMF

- Heated 850nm VCSEL laser
- Receiver limiting electrical interface
- Duplex LC connector
- Built-in digital diagnostic functions

Description

10Gb/s SFP+ transceivers are designed for use in 10-Gigabit Ethernet links over multimode fiber. They are compliant with SFF-8431, SFF-8432, IEEE 802.3ae 10GBASE-SR/SW and 10G Fibre Channel 1200-Mx-SN-I. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

The transceiver is a "limiting module", i.e., it employs a limiting receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host-board EDC PHY with a limiting receiver SFP+ module. The optical transceivers are compliant per the RoHS Directive 2011/65/EU.

Product Specifications

I.General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Bit Rate	BR	9.95		10.5	Gb/s	1
Bit Error Ratio	BER			10-12		2

		Maximum Sup	ported Dis	stances			
Fiber Type	850nm OFL Bandwidth						
62.5µm	160 MHz-km				26		
	OM1 200 MHz-km	Lmax			33	m	
50µm	400 MHz-km				66		
	OM2 500 MHz-km				82		
	OM3 2000 MHz-km	Lmax			300	m	
	OM4 4700 MHz-km				400		

Notes:

1.10GBASE-SR/SW.

2. Tested with a 2 31 – 1 PRBS.

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	T _A	-40		85	°C	
Relative Humidity	RH	0		85	%	1

Notes:

1. Non-condensing ..

III. Electrical Characteristics (TOP= 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 Volts)

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Supply Voltage	Vcc	3.14		3.46	V	
Supply Current	lcc			289	mA	

Transmitter								
Input differential impedance	R _{in}		100		Ω	1		
Differential data input swing	Vin,pp	180		700	mV			
Transmit Disable Voltage	V _D	2		Vcc	V			
Transmit Enable Voltage	V _{EN}	Vee		Vee+ 0.8	V			
Receiver								
Differential data output swing	Vout,pp	300		850	mV	2,6		
Output rise time and fall time	t _r	28			ps	3		
LOS asserted	$V_{\text{LOS fault}}$	2		Vcc _{HOST}	V	4		
LOS de-asserted	$V_{\text{LOS norm}}$	Vee		Vee+0.8	V	4		
Power Supply Noise Tolerance	VccT/VccR		Per SFF-84	31 Rev 4.1	mVpp	5		

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. Into 100 Ω differential termination.
- 3.20 80 %. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1' s and four 0' s in sequence in the PRBS^9 is an acceptable alternative. SFF-8431 Rev 4.1.
- 4.LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.
- 5. Testing methodology per SFF-8431. Rev 4.1
- 6. The FTLX8573D3BTL is a "limiting module", i.e., it employs a limiting receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host-board EDC PHY with a limiting receiver SFP+ module.

IV. Optical Characteristics (TOP = 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 V)

Parameter	Symbol	Min	Тур.	Мах	Unit	Note		
Transmitter (Tx)								
Optical Modulation Amplitude (OMA)			-1.5		dBm	1		
Average Launch Power	P _{AVE}	-5		-1	dBm	2		
Optical Wavelength	λ	840	850	860	nm	1		
RMS Spectral Width	$\Delta\lambda_{rms}$			0.45	dB	1		
Optical Extinction Ratio	ER	3.0	5.5		dB			
Transmitter and Dispersion Penalty	TDP			3.9	dB			
Average Launch power of OFF transmitter	P _{OFF}			-30	dBm			
Tx Jitter	Tx _j	F	Per IEEE 802.3ae r	equirements				
Encircled Flux	<4.5μm <19μm	86		30	%	3		
Relative Intensity Noise	RIN ₁₂ OMA			-128	dB/Hz			

	Recei	iver (Rx)				
Receiver Sensitivity (OMA) @ 10.3Gb/s	R _{SENS1}			-11.1	dBm	4
Stressed Receiver Sensitivity (OMA) @ 10.3Gb/s	R _{SENS2}			-7.5	dBm	5
Maximum Input Power	P _{MAX}	+0.5			dBm	
Wavelength Range	λ_{C}	840		860	nm	
Receiver Reflectance	LOS _D			-12	dB	
LOS De-Assert	LOS _A			-14	dBm	
LOS Assert	LOS _A	-30	-23		dBm	
LOS Hysteresis		0.5			dB	

1. Per Tradeoff Table 52.8, IEEE 802.3ae 2005

2. Average Power figures are informative only, per IEEE802.3ae.

3. Measured into Type A1a (50/125 µm multimode) fiber per ANSI/TIA/EIA-455-203-2.

4. Measured with worst ER; BER<10-12; 231 – 1 PRBS.

5.Per IEEE 802.3ae.

V.Digital Diagnostic Specifications

The transceiver can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Min	Тур.	Max	Units	Ref.	
Accuracy							
Internally measured transceiver temperature	DD _{Temp}	-3		3	٥C		
Internally measured transceiver supply voltage	DD _{Voltage}	-100		100	mV		
Measured TX bias current	DD_{Bias}	-10		10	%	1	
Measured TX output power	DD _{Tx-Power}	-2		2	dB		
Measured RX received average optical power	DD _{Rx-Power}	-2		2	dB		

Parameter	Symbol	Min	Тур.	Max	Units	Ref.			
Dynamic Range for Rated Accuracy									
Internally measured transceiver temperature	DD _{Temp}	-40		85	°C				
Internally measured transceiver supply voltage	DD _{Voltage}	3.14		3.46	V				
Measured TX bias current	DD_{Bias}	0		20	mA				
Measured TX output power	DD _{Tx-Power}	-9		-2.5	dBm				
Measured RX received average optical power	DD _{Rx-Power}	-20		0	dBm				
	Max Re	porting Ran	ige						
Internally measured transceiver temperature	DD _{Temp}	-40		125	٥C				
Internally measured transceiver supply voltage	DD _{Voltage}	2.8		4.0	V				
Measured TX bias current	DD _{Bias}	0		20	mA				
Measured TX output power	DD _{Tx-Power}	-10		-3	dBm				
Measured RX received average optical power	DD _{Rx-Powe}	-22		0	dBm				

1. Accuracy of Measured Tx Bias Current is 10% of the actual Bias Current from the laser driver to the laser.

VI. Pin Description

Pin	Symbol	Name/Description	Ref.
1	V _{EET}	Transmitter Ground(Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RSO	No connection required	
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	RS1	No connection required	
10	V _{EER}	Receiver Ground(Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground(Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground(Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground(Common with Receiver Ground)	1

- 1. Circuit ground is internally isolated from chassis ground.
- 2.T FAULT is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on T DIS >2.0V or open, enabled on T DIS <0.8V.
- 4. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5. LOS is open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

VII. Mechanical Specifications

Datum and Basic Dimension Established by Customer Rads and Vias are Chassis Ground, 11 Places

A Through Holes are Unplated

NOTES:

- ▲ NINIMUN PITCH ILLUSTRATED, ÉNGLISH DIMENSIÓNS ARE FOR REFERENCE ONLY
- 2. NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS